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108.6” of snow this winter
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Mission
Develop breakthroughs that will lead to more sustainable
and durable infrastructure, buildings and homes

Strategy

|.  Provide scientific basis for informed decisions
. Demonstrate the benefits of a life-cycle view
lll. Transfer research into practice

Slide 4



Increasing

performance

Design process

Analyze
and balance
trade-offs

Reducing

environmental Reducing cost
Impacts

LCA (life-cycle LCCA (life-cycle g4 s
assessment) cost analysis)



Science Engineering Economics Environment
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Multiple mechanisms for reducing environmental impa ct and cost

Materials
Production

» Use recycled

* Reduce
energy

e Improve
material
performance

m)

Design &
Construction

e Use less
(i.e., stronger)
material

» Create longer-
lasting
designs

- -

Use End-of-Life

 Reduce e Enable
vehicle fuel material
consumption recovery

 Reduce heat
Island effects

Prioritizing mechanisms requires a trade-off analysis of
performance and life-cycle environmental impacts and costs
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Materials Design &
Production Construction
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1. Drive the pervasive use of
life-cycle costing and life-cycle
assessment for:

— Pavement design

— Pavement type selection
— Maintenance decisions
— Asset management

2. Improve the robustness of pavement-
related decision-making
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$ * Pavement design is iterative:
Accelerated feedback  more testing, more improvement

Design Final
Analyze Using ME Design
Proposal & : e
Design Principles
Context
Layers Subgrade 6.0" Agg Subbse
Traffic <
- e ua = rade
Climate 9 Y Subgrad

Performanee

Develop Lifecycle
Bill of Activities

Evaluate
LCCA/LCA

s
==
=
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$ * Pavement design is iterative;
Accelerated feedback  more testing, more improvement

Desi Final
Pro e(fgr 2 Analyze Using ME Design
" pesign rrincipies 17
Context
Layers Subgrade 6.0" Agg Subbse
Traffic |
Climate Subgrade

MIT research
aims to
Integrate these
activities

Develop Lifecycle
Bill of Activities -

Evaluate
B

=

dequa
orm

|
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Layers
Traffic
Climate

6.0" Agg Subbse

Subgrade

Analyze Using ME <f'Pavement-ME

Design Principles

— Performance-to-activity model
» Material quantities
» Construction activities
» Maintenance timing

Develop Lifecycle

Bill of Activities

— e Logistics

" LCCA
 Magnitude & timing of cash
LCA

Evaluate
LCCA/LCA

A5

N Y
srformanee

_e |nputs Emissions

Final
Design

6.0" Agg Subbse

Subgrade







Effective price projections:

» Must be built from significant sets of data
* Must be viewed as probabilistic in nature
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3 Traffic Levels

Rural local
street/highway

Rural state highway

Urban interstate

Several framing

conditions

Pavement designs

Maintenance
schedules

Design life

Analysis period
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- Life cycle matters

- Context matters
- The future Is worth considering

- Risk matters
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Future costs can be significant

Total life-cycle costs for a state highway in Florida

Future Initial
maintenance construction

and costs

rehabilitation 47%

/

costs
53%

Flexible pavement design developed by Applied Research Associates (ARA), Inc,:
AADTT 1k/day; 4 lanes; Wet-no-freeze-FL; FDOT-based rehabilitation schedule;
Analysis period = 50 years. Slide 20
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Costs vary with location, traffic level, & pavement design

Interstate, rigid design Local highway, rigid design
Rehab
costs >‘ Rehab
2% COsts ‘ -
: Initial 11% i
. tosis 39%

P 0202020

98%

S
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Effective price projections are plausible

Concrete (Constituent Based) Asphalt (Constituent Based)
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60%

40%

20%

Average Error of Forecast

0%

Testing the effectiveness of the model for the
state of Colorado

Real price projections outperform conventional
assumptions of no real price change

Current Practice

AQV:/ IR TI\’\/

CSHub Forecasting Model

0 5 10 15 20

Years into the future Slide 23
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(Pavement-Vehicle \ Incorporating use
Interaction J phase is a recent

Roughness development
Deflection
 Albedo
e Carbonation e Excavation
« Extraction and \,Hontng ) *Landiling
production * Recycling
 Transportation  Onsite equipment  Transportation
Use
End-of-Life/

Materials m=mmp Construction Rehabilitation

Maintenance

* Materials
e Construction
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MIT Model MEPDG+HDM4
L Structure and Material ﬁ
Calculation | peflection & Excess Fuel Environmental
Method: Roughness Consumption Impact
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3 Traffic Levels

[ } street/highway

 Rural local

* Rural state highway

i e Urban interstate

Several framing

conditions

 Maintenance

[ } » Pavement designs
} schedules

» Design life
[ } * Analysis period
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- Life cycle matters

Pavement-vehicle interaction
(PVI) matters

- Context matters
Large opportunities to improve
exist
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Use phase can be a significant fraction of pavement environmental impact

| Example:
Endéoo/f-Llfe\ Life-cycle GHG
0 (greenhouse gas)

Maintenance &

Rehab emissions of an urban
[PERCEE]NTAG interstate pavement in

Missouri

Flexible pavement design developed by Applied Research Associates (ARA), Inc,:

AADTT 8k/day; 6 lanes; Wet-freeze-MO; MEPDG-based rehabilitation schedule. Slide 30



5%
Excess fuel consumption from PVI is significant

Estimate of extra fuel consumption from PVI in US pavement test sections
750 4 Total of h

~700 million gallons
of excess fuel

S per year y

500
Urban Other Arterial

®m Urban Freeways

® Urban Interstate
Rural Other Arterial

m Rural Interstate

250

Million Gallons per Year
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PVI data can be used in network pavement management

Excess fuel consumption due to PVI for cars & truck S on interstates in
_ Virginia in 2013
Fuel Consumption
(gallon/mile)

Assumed speed= 100 km/h=62.6 mph; assumed temperature= 16 C/61 gde %2
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Burdens vary with location, traffic level, & pavement design

EoL Interstate, rigid design EoL Local highway, rigid design
o 11%

\
Rehab/‘ Initial Rehab/\‘ Initial
0% 36% 1% 570,

e Use /
- 0
57% e

e |nitial = «)*
Materials & */
construction

» Rehab = Maintenance
& rehabilitation

 EoL = end-of-life




In some contexts, deflection causes the majority of fuel lost to PVI

Example:

Use-phase GHG
emissions by source for
an urban interstate
pavement in Missouri

*Other: carbonation & lighting Slide 34
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In some contexts, however, roughness causes most of the fuel lost to PVI

Example:

Use-phase GHG
emissions by source for
an urban interstate
pavement in Colorado

*Other: carbonation & lighting Slide 35



Increasing

performance

Design process

Analyze
and balance
trade-offs

Reducing

environmental Reducing cost
Impacts

LCA (life-cycle LCCA (life-cycle g;4e 36
assessment) cost analysis)



More information available at:
http://cshub.mit.edu/
cshub@mit.edu
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$170 billion in annual capital investment

+ 4 needed to improve road system
(source: FHWA)

0p | * The Highway Trust Fund is nearly
bankrupt

* Funding for roads will remain
constrained for the foreseeable future
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Governments Look for New Ways to Pay
Feb 14, 2013 for Roads and Bridges
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We urgently need cost-effective solutions that maximize

performance while minimizing environmental impact
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Pavement has associated activities;

...activities translate to cost & impact

6.0" Agg Subbse

Subgrade

Pavement
Design

Context

>

MEPDG

Bill — of —

»

Performance-
to-activity
modeling

activities

* Material
guantities

« Construction
activities

* Maintenance
timing

 Logistics

LCCA

? N\

LCA
Model

* Magnitude
e Timing

Life-cycle

inventory

Material &
energy
inflows

 Emissions
outflows

- J
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Probabilistic models incorporate uncertainty. The f igure shows a range
of cost outcomes for two competing project alternat lves. Source: FHWA
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Prices change differently for different materials

T
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Higher uncertainty means higher risk

Difference between alternatives Risk of exceeding a particular
depends on risk profiles cost can be calculated

- Design 2

Design 1

! n # $ % Slide 46



* Improve models for estimating initial
construction cost

 Incorporate life-cycle cost considerations
Into asset management programs
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Pavement design optimization saves GHGs & $

\,\ Optimizing design

represents a clear
Win-win
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* Develop context-specific models of albedo

* Explore impacts of using recycled content
INn pavement materials

 |dentify opportunities to reduce impact
using optimized designs
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Layers
Traffic
Climate

6.0" Agg Subbse

Subgrade

Analyze Using ME

Design Principles Theme of

collaborative projects:
Integration of LCCA
and LCA into

pavement and asset
management
decisions

Develop Lifecycle
Bill of Activities

Evaluate Final
LCCA/LCA
A - .0” Agg Subbse
N Y
SJormanee Subgrade

I



e LCCA

— Integrating probabilistic LCCA and ME design
— Improving cost estimation methods

e LCA

— Integrating probabilistic LCA and ME design
— Improving data and models used in LCA

e PVI

— Network-level assessments of excess fuel
consumption due to PVI

Slide 51



B Flexible Rigid
Parameter Value
AADTT two Directions 1,000 vehicles/day
Number of Total Lanes- 4
two Directions
6” Lime Rock AADTT Linear Annual 3%
Base 6" Lime Rock Increase
Base Wet No Freeze — FL
Soil Type
Subgrade Functional Unit:
1 center-lane mile over a 50-year
analysis period
FDOT Rehabilitation Schedule FDOT Rehabilitation Schedule

* Year 14: 2" Mill, 2.5” AC overlay * Year 20: Diamond Grinding, 3% Patching

* Year 28: 2" Mill, 2.5” AC overlay * Year 35: Diamond Grinding, 5% Patching

* Year 40: 2" Mill, 2,5” AC overlay * Year 50: end of life

* Year 50: end of life

MEPDG Rehabilitation Schedule MEPDG Rehabilitation Schedule
* Year 20: 2" Mill, 2.5" AC overlay « Year 30: Diamond Grinding, 1% Patching
* Year 37: 2" Mill, 2.5” AC overlay * Year 50: 7 years Sa|vage

* Year 50: end of life Slide 52



B Flexible Rigid
i ; Parameter Value
AADTT two Directions 8,000
vehicles/day
6.0" Agg Subbse Number of Total Lanes- —
24" rock base two Dlrec_tlons
material AADTT Linear Annual 3%
Carad Increase
Subgrade Wet Freeze - MO
Soil Type
Functional Unit:
1 center-lane mile over a 50-year
analysis period
MODOT Rehabilitation Schedule MODOT Rehabilitation Schedule
» Year 25: 2" Mill, 2" AC overlay » Year 25: Diamond grinding & full
* Year 35: 2" Mill, 2" AC overlay depth patching
» Year 50: end of life * Year 50: End of life
MEPDG Rehabilitation Schedule MEPDG Rehabilitation Schedule

* Year 12: 2" Mill, 2” AC overlay * Year 30: Diamond grinding & full
* Year 33: 2" Mill, 3" AC overlay depth patching

* Year 50: end of life * Year 50: 7 years salvage Slide 53
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LCA (life-cycle
assessment)

%

Factors In
decisions

LCCA (life-cycle cost
analysis)

)

Pavement design process
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