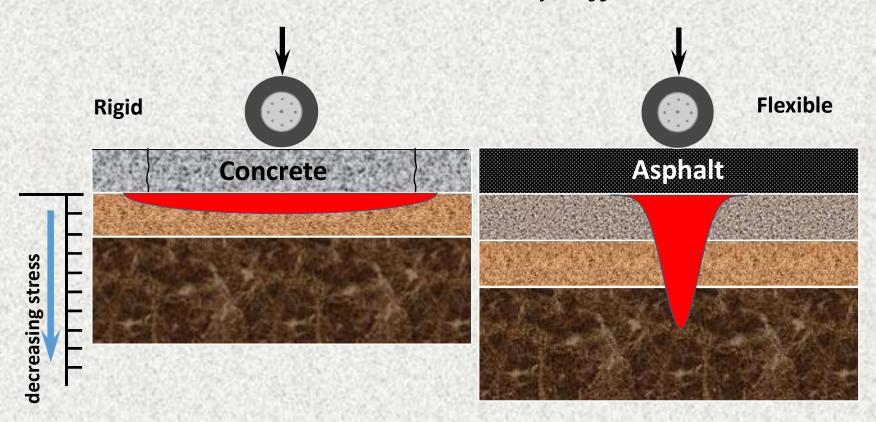


Highways, Roads, Streets, Ramps, Intersections, and Roundabouts

Pavement Concerns:

- Steep slopes for trucks
- Starting and stopping
- Slow & heavy loads
- Turning movements
- High shear stresses
- Vehicle safety
- Repeated repairs

- > Typical Asphalt Pavement Failures at Intersections
 - Slippage/Cracking, Shoving, Rutting, Raveling
 - Generally caused by high shearing forces.


Solution: Concrete Overlays (aka "whitetopping")

- Economical long lasting, durable surface
 - Don't have to return to "fix" road
 - Less construction rehabs less traffic disruption
 - 20+ year life
- Suitable over concrete or asphalt pavements
- Thin Layers 4 to 6 inches over existing base
- No reinforcing steel/wire mesh
 - Maybe dowels/tie bars depending on traffic loads
- Concrete overlays have a proven track record with millions of SQ YDs across the U.S.

Solution: Concrete Overlays (aka "whitetopping")

- > All the **BENEFITS** of concrete pavement
 - Long life with low maintenance costs
 - Durable and skid resistant surface
 - Better light reflectivity, enhances pedestrian safety.
 - No Softening Deterioration vehicle safety; less liability
 - Better Fuel Efficiency (trucks)

Stress distribution is very different

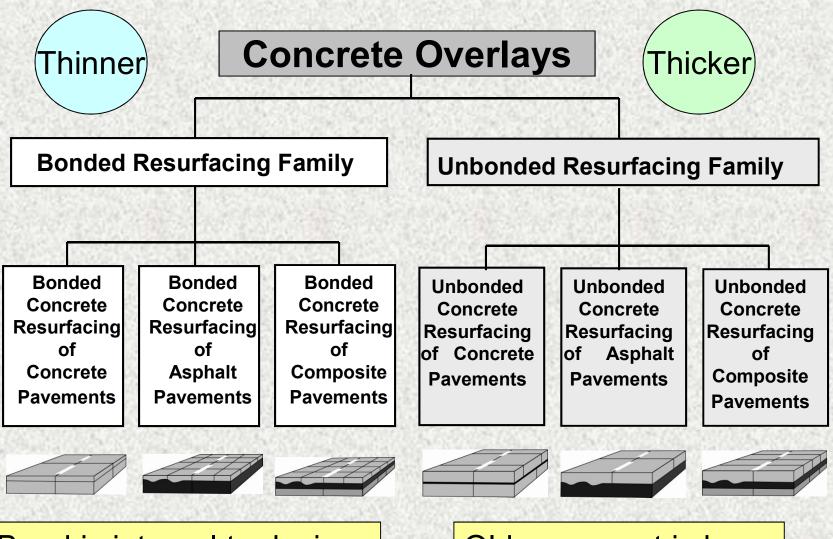
The load capacity parameter for pavements is primarily thickness.

Concrete overlay provides a rigid pavement surface able to withstand heavy traffic loads improving performance and reducing the need for constant repairs

Single Lane Repair

Before After

Multiple Lane Repair

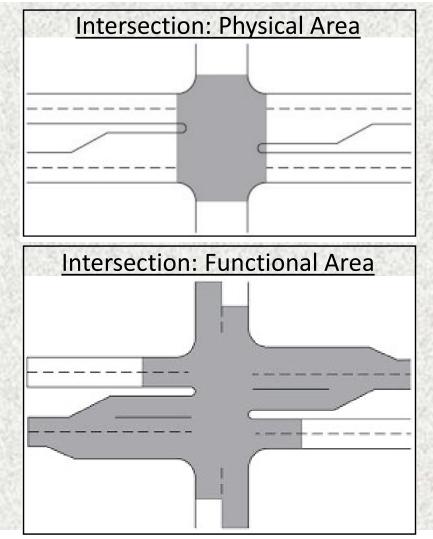

Design Considerations

- Evaluate Causes of Distress along with Existing Pavement Materials, Subgrade, and Drainage
- Overlay Solution Bonded vs Unbonded Design (thickness varies)
- Are Transverse Joint Dowel Bars and/or Longitudinal Joint Tie Bars Required?
- Choosing Limits of Work functional/distress area plus? steep grades?
- Determine Saw Cut Joint Pattern for Geometry

Design Considerations

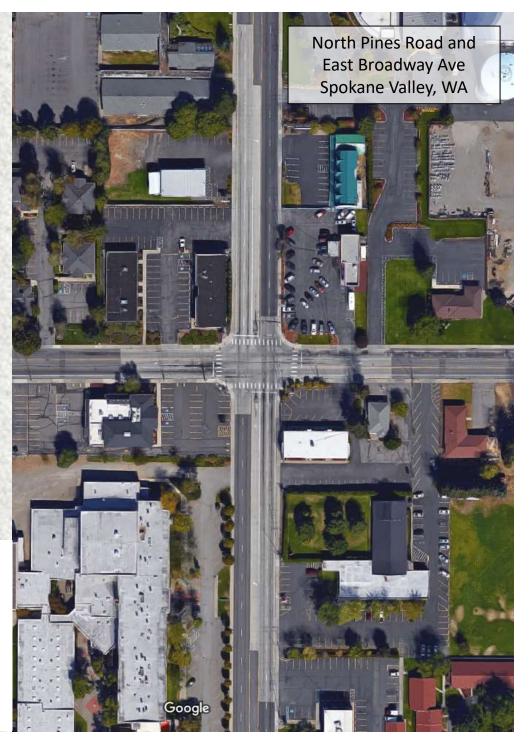
- Concrete Curing Time to achieve Opening Strength
- Understand Traffic Patterns for Timing/Sequencing of Placements
- Limited or NO Options for Detours
- Limited Road Width and Congestion MOT
- Coordination with Local Agencies/First Responders/Businesses/Homes

Family of Concrete Overlays



Bond is integral to design

Old pavement is base


- Existing asphalt serves as compacted base for concrete pavement (bonded or unbonded overlay)
- SHA has an approved "whitetopping" mix designation

Note 1: Physical area carries the combined traffic from both roadways. Therefore, thickness design must account for both.

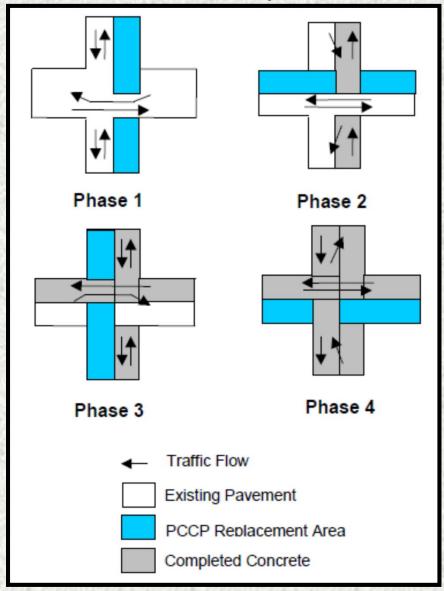
Note 2: Functional area must account for stopping distances and turning/accelerating movements.

Specifications (Public)

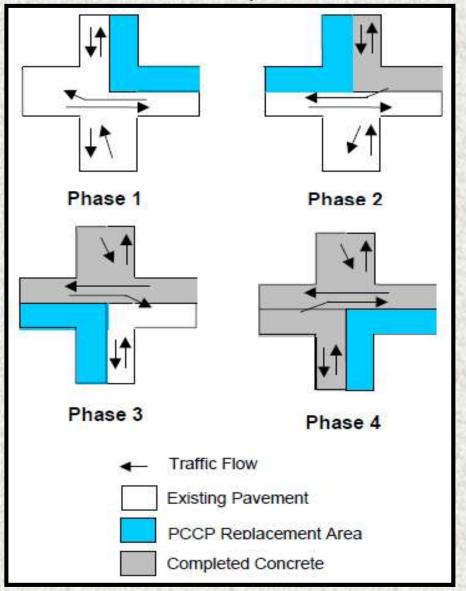
- Maryland DOT Policy Manual SHA
 - Section 520 Plain and Reinforced Portland Cement Concrete Pavements
 - Section 521 Continuously Reinforced Portland Cement Concrete Pavement
 - Section 522 Portland Cement Concrete Pavement Repairs
 - Section 523 Joint Sealing of Portland Cement Concrete Pavements
 - Section 525 Portland Cement Concrete Spall Repair
 - Section 528 Resurfacing Asphalt Pavements Using Portland Cement Concrete
 - Section 902 Portland Cement Concrete and Related Products
 - Sections 908 (reinforcing steel), 911 (joint materials), 915.03(concrete plants), 917.02 (epoxy coating)
 - Special Provisions Permeable Pavement System, FDR, RCC

Specifications (Private)

 Typically Section 3300 referencing ACI, PCA methods, procedures, and guidelines with specific comments


Concrete Paving SHA Table 902 A

PORTLAND CEMENT CONCRETE MIXTURES										
MIX NO.	SPECIFIED ACCEPTANCE COMPRESSIVE STRENGTH	COMPRESSIVE STRENGTH ACCEPTANCE TEST AGE	STD. DEV.			COARSE AGGREGATE SIZE	MAX WATER/ CEMENT RATIO			CONCRETE TEMP.
	psi	days	psi	psi	lb/yd3	M 43 / M 195	by wt	in.	%	°E
1	2500	28	375	2430	455	57,67	0.55	2 - 5	5 - 8	50 - 95
2	3000	28	450	3010	530	57,67	0.50	2 - 5	5 - 8	50 - 95
3	3500	28	525	3600	580	57,67	0.50	2 - 5	5 - 8	50 - 95
4	3500	28	525	3600	615	57,67	0.55	4 - 8	N/A	50 - 95
5	3500	28	525	3600	580	7	0.50	2 - 5	5 - 8	50 - 95
6	4500	28	675	4770	615	57,67	0.45	2 - 5	5 - 8	50 - 80
7	4200	28	630	4420	580	57	0.50	11/2 - 3	5 - 8	50 - 95
8	4000	28	600	4180	750	7	0.42	2 - 5	5 - 8	50 - 80
9	3000	(a)	N/A	N/A	800	57,67	0.45	4 - 8	5 - 8	60 - 100
10	4500	28	675	4770	700	3/4" - No. 4	0.45	2 - 5	6 - 9	50 - 80
11	4200	28	630	4420	25/10	57,67	0.45	2 - 5	5 - 8	50 - 80
12	4200	28	630	4420	===	3/4" - No. 4	0.45	2 - 5	6 - 9	50 - 80
HE	3000	(b)	N/A	N/A	N/A	N/A	N/A	3 - 9	5 - 8	60 - 100
PC (a)	N/A	N/A	N/A	N/A	450	7,8	0.45	N/A	15 - 25	N/A
WT	2500	(d)	NA	NA	650	57	0.45	5 max	5 - 8	50 - 95


Refer to Explanation Notes for SHA Table 902 A

Staging: Intersection Under Traffic

Construction By Lane

Construction By Quadrant

Source: ACPA

Project Solutions

- Design/Construction/Traffic Team
 - Planning for Successful Project!!
 - Each location has different, unique issues
 - MOT options involve contractor?
 - Dollars and Time
- **❖** Be Creative, Use Innovative Ideas
 - Think outside the Box!
- Public Information Program Stakeholders
 - Unhappy/Aggravated Public using the road
 - Business/residential needs may supercede project engineering/construction needs

Innovative?

Construction Issues

- Safety for Traveling Public and Work Crews
- Tight Schedule Weather for Concrete Operations
- Changing Traffic Patterns for Phases Continuous PR
- Limited Road Width MOT to reduce congestion
 2 Lanes needed one work zone & one safety zone
- Surface Preparation, Forms, Concrete Placement
- Restore Utilities and Vehicle Detection Loops
- Concrete Curing Time to achieve Opening Strength
- Timing of Saw Cut Joints

Maintenance of Traffic

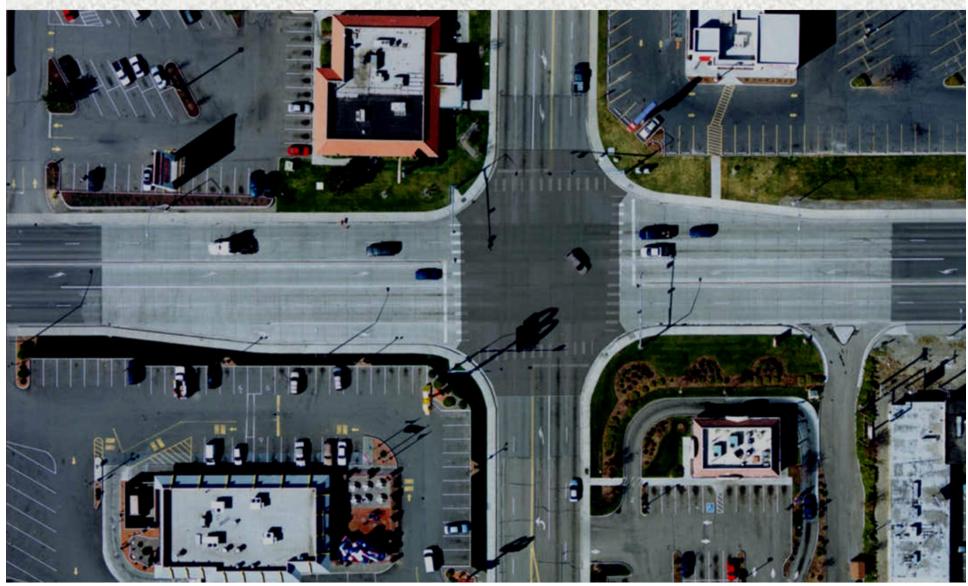
- Options
 - Complete closures with detours
 - Partial closures with detours
 - Construction under traffic
 - Complete closures during limited time periods
 - Combinations of the above
- Early and Often PR Program for public information and acceptance of MOT option
 - Change the Mindset of Public Perception

Existing Roadway before Milling with Traffic Control

Traffic Control – Lessons Learned

- Can manage traffic throughout the project
 - Continuous Public Relations notifications sign boards, social media, TV, radio, papers
- Closed to thru traffic with local access only BEST
 - One way through work zone
 - Contractor must aggressively manage traffic
 - Flaggers, cones, barrels, stop lights, pilot vehicle
 - Need adequate signage & early warning
 - Combinations of the above

Concrete Intersections – Staging (Start)


Concrete Intersections – Staging (Stage 1 Under Traffic)

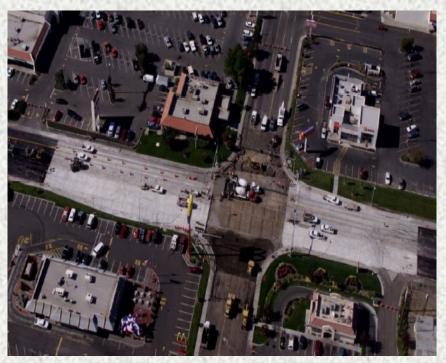
Concrete Intersections – Staging (Stage 2 Under Traffic)

Concrete Intersections – Staging (Stage 3 Under Traffic)

Concrete Intersections – Staging (Stage 4 Under Closure Over Weekend)

Weekend Closure Solution

Friday evening to Saturday evening


- 9:00 pm to 10:00 pm Install Traffic Controls
- 10:00 pm to 3:00 am Remove existing pavement
- 3:00 am to 9:00 am Grade, repairs, prep base
- 9:00 am to 5:00 pm Form and place concrete
- 1:00 pm Start joint sawing
- 9:00 pm

 Clean concrete surface
- 10:00 pm Apply curing to concrete

Sunday Evening

- 10:00 pm

 Restart work after 24 hour cure
- 10:00 pm to 12:00 am Complete asphalt tie-in
- 12:00 am to 1:00 am Clean roadway
- 1:00 am to 3:00 pm Prep roadway and stripe
- 3:00 am to 4:00 am Remove Traffic Controls
- 4:00 am Open to traffic

Design opening strength = 2500 psi. Concrete mix <u>WT</u> (whitetopping) from SHA Table 902A provides for minimum compressive strength of 2500 psi in 24 hours!

Concrete Pavement Websites PavementDesigner.org

www.nrmca.org

Design Assistance Program (DAP)

PaveAhead.org

PerviousPave software

www.cptechcenter.org/

Free Downloads (**Overlay** and FDR Guides)

www.rmc-foundation.org

Research Information Guides MIT Research Findings

www.rollercompacted.org www.RCCPavementCouncil.org

www.acpa.org

StreetPave software
AirPave software
WinPas software

www.marylandconcrete.com

Contractor Referrals
Certification Programs
Concrete Parking in Practice
Maryland Projects

www.concreteparking.org

Questions?

Tom Evans
MRMCA
301-694-4899
tom@marylandconcrete.com

Robert Hackman, P.E. **ACPA** 410-960-4822 acpapave@gmail.com

Concrete Pavement

Urban Street Reconstruction

Broening Highway Baltimore City

MOT Challenges

- Options Overlay Intersection/Highway (3 lanes wide)
 - 1. Total Closure of Road during Weekends
 - Detour was not practical
 - 2. Double Lane Closure and Maintain only One Lane on Road during weekends
 - Longer Construction Duration
 - Maybe Excessive Queues
 - Weekend Weather Constraints
 - 3. Double Lane Closure counting Outside Shoulder as lane for 7 days/week
 - Shorter Construction Duration than Option 2
 - Less Queue than Option 2

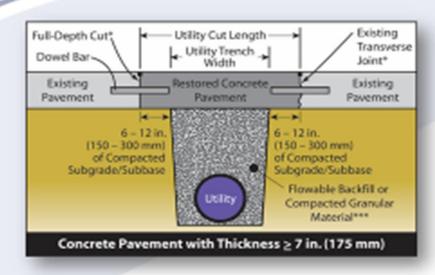
MOT Solution

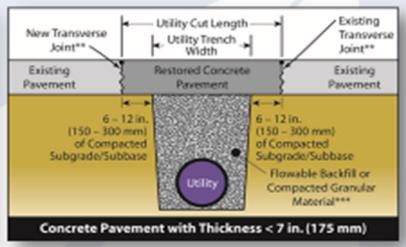
MOT Option 3 was selected

- Less Queue
- Shorter Construction Duration
- Phase 1 Slow Lane and Outside Shoulder to be Closed.
 Maintain Traffic on the Existing Middle and Fast Lane
- Phase 2 Fast Lane and Middle Lane to be Closed.
 Maintain Traffic on the already Constructed Slow Lane and Outside Shoulder

Other Issues

- Concrete Construction Barrier
- Getting Saw Cut Joints close to the Final Lane Markings
- Heavy PR campaign from Agency


Concrete Paving for Overlays


Solution: Concrete Overlays (aka "whitetopping")

- Suitable over concrete or asphalt pavements
 - Bonded or Unbonded
- Economical solution with long lasting durable surface
- All the typical benefits of concrete pavement
- Concrete overlays have a proven track record with millions of SQ YDs across the U.S.

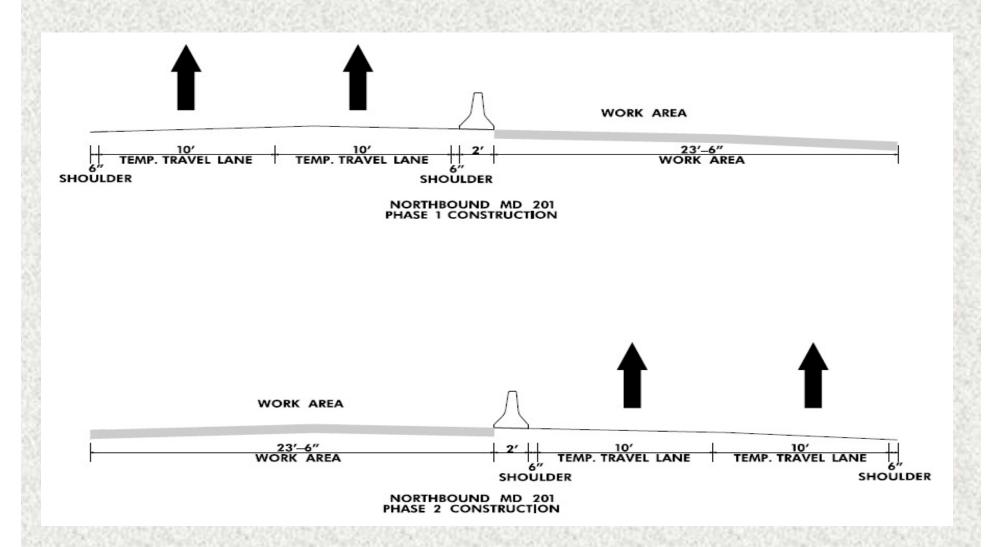
Concrete Pavement

Common Utility Cut Details

- * A full-depth cut should be made at any utility cut boundary that is not an existing joint for thicknesses of 7 in. (175 mm) and greater.
- ** For pavements thinner than 7 in. (175 mm), utility cut boundaries that are not at an existing joint should be cut to a depth of about one third of the slab thickness and the remainder of the depth removed with a jackhammer.
- *** Some agencies have had success with up to a 2 ft (0.6 m) layer of natural soil above the backfill but below the restored concrete pavement surface course.

Concrete Pavement

Early Saw Cutting


Joint Action

M-5 and Pontiac Trail - Michigan

MOT Challenges

Typical for MOT Phase 1 and 2

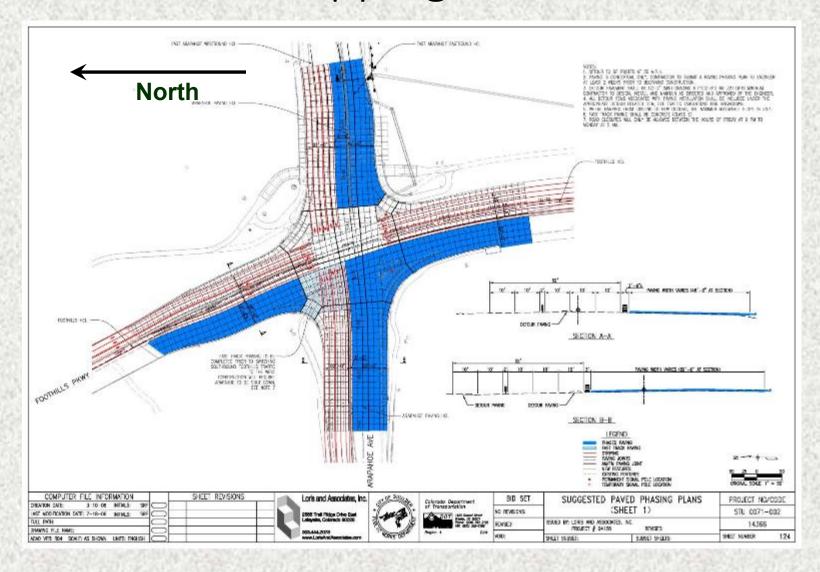
Milled Roadway - Section on Localized Shoulder

Existing Roadway before Milling

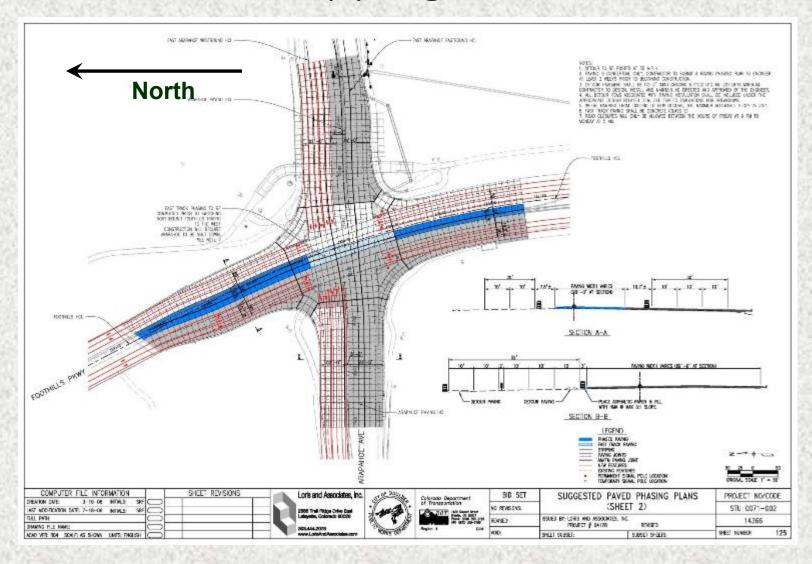
Concrete Intersections – Considerations

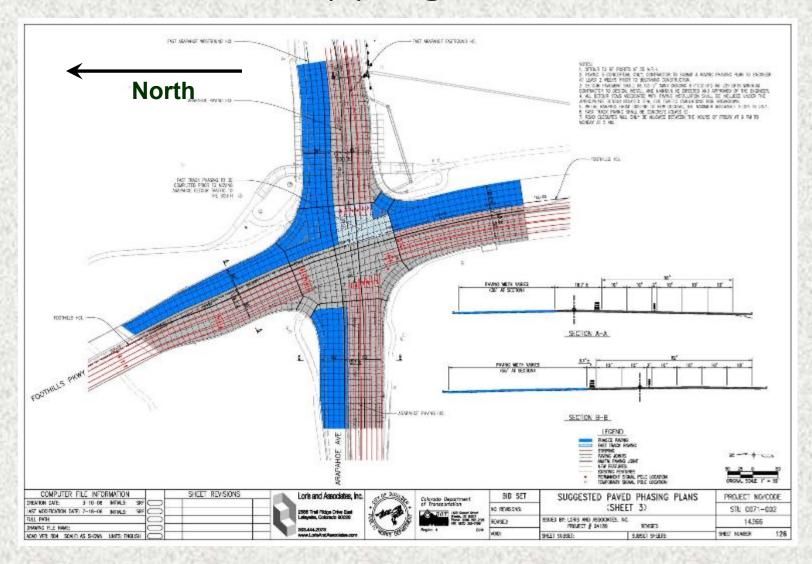
- Typically Eliminates Rutting/Shoving/Cracking Concerns
- Complete reconstruction or overlay?
- Concrete intersection construction limits
 - Stopping Distance
 - Average Queue Length
 - Limits of Pavement Distress
 - Turning Radius Minimums
- Thickness Design (base and subgrade requirements)
- Jointing detail
- Pavement profiles
- Concrete materials (high early strength for fast-track paving?)
- Concrete to asphalt transitions
- Traffic detection systems
- Coordination with local agencies/first responders

Bend Oregon Roundabout



Concrete Paving for Overlays


I-68 Truck Climbing Lane Western MD


Phase 1 Whitetopping

Phase 2 Whitetopping

Phase 3 Whitetopping

