CONCRETE 2019

CONCRETE 2019

The 19th Annual Concrete Conference

"Concrete Solutions for the Maryland Transportation Industry"

"Changing the Mindset"

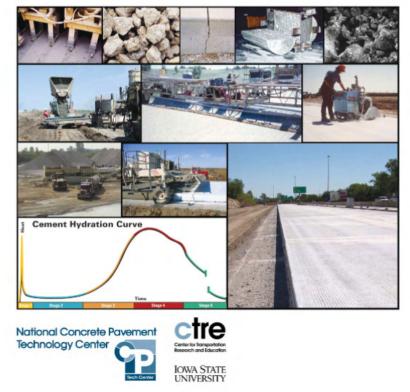
Delta Hotels by Marriott – Hunt Valley, Maryland March 12, 2019

QUALITY CONSTRUCTION PRACTICES FOR TODAY'S CONCRETE PAVEMENTS

Gordon L. Smith, PE Associate Director National Concrete Pavement Technology Center

Coming soon:

IMCP Manual Edition 2

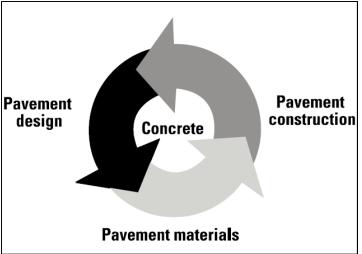

Integrated Materials and Construction Practices for Concrete Pavement:

A State-of-the-Practice Manual

FHWA Publication No. HIF - 07 - 004

Second printing October 2007 [December 2006]

Keys to Quality Concrete Pavement

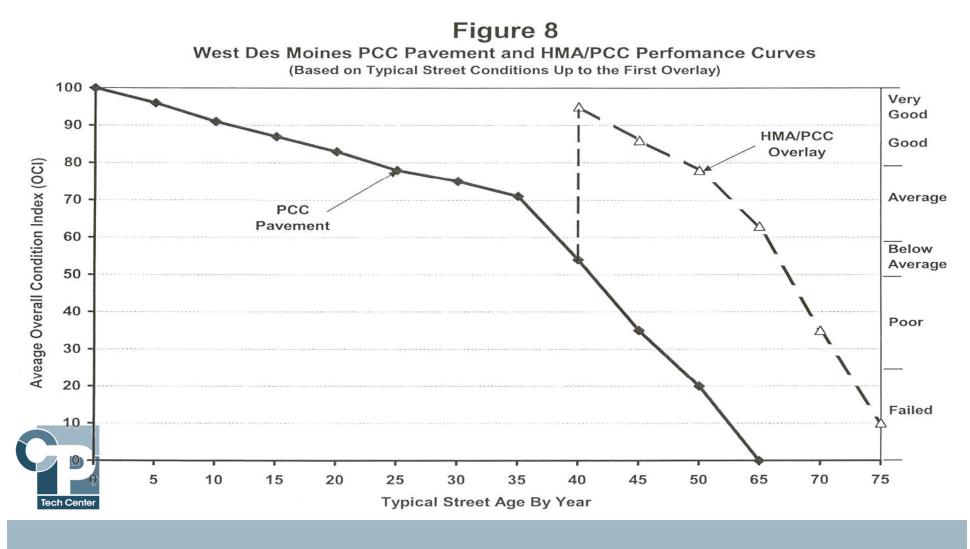

- Adequate pavement design
- Appropriate mix design
- Quality materials
- Good construction practices

What's This All About?

- Concrete pavement is an integrated system
- How to optimize the performance
 - Structural & Functional Design
 - Quality of Materials
 - Construction factors (weather, equipment, personnel)

Concrete Pavement Basics – What do we want in a pavement?

- The Owner wants:
 - Cost Effective/Reliable
 - Low Maintenance
 - Durability
- The Contractor wants:
 - Workability
 - Constructibility
- The Public wants:


- Safety
- Rideability


Performance

2004 Street Management System Report

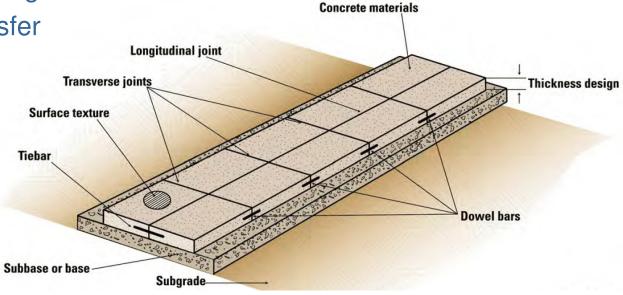
What Causes Concrete Distress?

- Inadequate Design and Construction
- Overload / Fatigue
 - Thickness
- Poor Support & Drainage
- High Permeability- Chemical Attack
 - Soft Water / Acid
 - Sulfates
 - De-icing Salts
- Freeze Thaw Cycling

Keys to Quality Concrete Pavement

Adequate pavement design

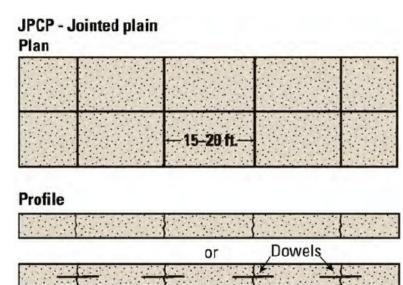
- Appropriate mix design
- Quality materials
- Good construction practices



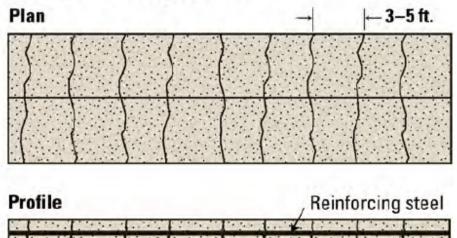
Pavement Elements

Select parameters that economically meet needs of project

- Support system
- Environment
- Materials
- Thickness
- Joint spacing
- Load transfer


Concrete Pavement Types

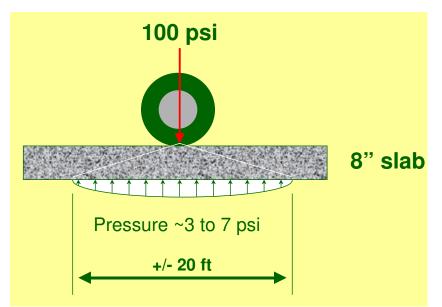
- Jointed Plain (JPCP)
- Jointed Reinforced (JRCP)
- Continuously Reinforced (CRCP)


	}	$\left\{ \right.$
2530 ft.	}	{

Frome	Dowel	IVIESI	Dowel
-			

About 0.2% steel by area

CRCP - Continuously reinforced



PAVEMENT DESIGN

What is Important – Strength or Uniformity of Subgrade?

- PCC pavements are rigid
- Vehicle loads are distributed over large areas (beam strength) (15-20 ft)
 - Minor deflections
 - Low subgrade pressures
- Subgrade uniformity is more important than strength

Achieving Quality Subgrade

- Achieving uniform subgrade support is one of the most important and most difficult problems facing the paving industry today:
 - Inherent variability of soils
 - Influences from water
 - Influences from temperature
 - Influences of construction activities
 - Abrupt changes in soil type, moisture content, and density

Subbases for PCC Pavements

- Under most conditions, at least one subbase/base layer is needed for optimum pavement performance
- Typical subbase materials:
 - Crushed concrete
 - Crushed limestone
 - Mixture of gravel, sand, soil
 - Stabilized material

Purpose of Subbases Under Concrete Pavements

- Maintain uniform support
- Protect subgrade from deformation from traffic loading
- Assure stable construction platform
- Provide adequate drainage from water infiltration
- Prevent excessive shrink and swell of high volumechange soils
- Help control excessive or differential frost heave
- Minimize mud-pumping of fine-grained soils
- Prevent consolidation of subgrade

Subbases - Long Term Performance

No Granular Subbase

With Granular Subbase

Pavements within 2 blocks of each other

Keys to Quality Concrete Pavement

- Adequate pavement design
- Appropriate mix design
- Quality materials
- Good construction practices

MIXES AND MATERIALS

How we proportion to achieve design goals?

		Workability	Transport	Strength	Cold weather	Shrinkage	Aggregate stability
Aggregate System	Type, gradation	~	-	-	-	-	√ √
Paste quality	Air, w/cm, SCM type and dose	~	~ ~	~ ~	~ ~	✓	✓
Paste quantity	Vp/Vv	~	-	-	-	~ ~	-

Critical Properties of Concrete

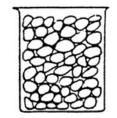
Properties for a uniform concrete are constantly the same from batch to batch even though materials may vary

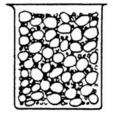
•Many factors:

- •Water content
- Aggregates
- Entrained Air
- •Time & Temperature
- •Cement

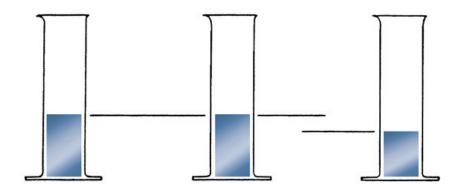
- •Supplemental Cementitious Material (SCM)
- Admixtures

Keys to Quality Concrete Pavement


- Adequate pavement design
- Appropriate mix design
- Quality materials
- Good construction practices



Aggregate Gradation


- Concrete aggregate should be well-graded
- Control combined grading to increase amount of aggregate in the mix
 - Reduced paste (shrinkage, heat, cost)

Aggregate is inexpensive and a good filler

Effects of SCMs on Fresh Concrete

- Reduce water requirement
- Reduce heat
- Retard setting
- Slow initial strength gain

How Much SCM?

% of total cementitious

- Class F fly ash: 15% 25%
- Class C fly ash: 15% 40%
- Slag:

15% - 40% 25% - 50%

Too little – no benefit Too much – slow setting, slow strength gain, cracking risk

Blended at the concrete batch plant, blended at the cement plant or interground at the cement plant

Keys to Quality Concrete Pavement

- Adequate pavement design
- Appropriate mix design
- Quality materials
- Good construction practices

Module 8

Concrete Pavement Construction

Field Verification

- Test mixture properties (before and during construction)
- Use production equipment
- Preconstruction meeting
- Quality control plan

IOWA STATE

UNIVERSIT

Concrete Production

- Setting up the plant
- Handling materials
- Stockpile management
- Batching
- Mixing concrete
- Delivering concrete
- Field adjustments

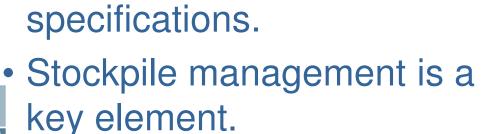
IOWA STATE

UNIVERSITY

Plant Checklist

IOWA STATE

UNIVERSITY


Table 8-2. Concrete Plant Checklist

No. Inspection item

- Check foundations of stockpiles for proper separation and adequate drainage.
- Check bins for adequate partitions to prevent intermingling of aggregates.
- 3 Check scales with test weights throughout range to be used.
- 4 Check scales for seals by approved agency.
- 5 Check water meter for accuracy.
- 6 Check for leakage of lines.
- 7 Check capacity of boilers and chillers if their use is anticipated.
- 8 Check admixture dispensers for accuracy.
- Check mixers for hardened concrete around blades.
- 10 Inspect concrete hauling units for cleanliness.
- 11 Check to ensure that all concrete-making materials have been certified and approved for use.
- 12 Observe stockpiling operations. Verify that segregation and contamination will not occur.
- 13 Observe charging of the bins. Verify that segregation and contamination will not occur.
- 14 Review aggregate moisture tests.
- 15 Observe batching operations at start and periodically during production.
- 16 Check scales for zeroing.
- 17 Check to ensure proper batch weights are set on the scales.

Handling Materials

- Efficient and controlled materials handling is mandatory for consistent quality.
- A plant can have many material feeds depending on the mix design and specifications.

IOWA STATE

UNIVERSITY

Stockpile Management

- Delivery, storage, loading
- Place a pad or aggregate separation layer
 - Prevent contamination
- Maintain uniform
 - Gradation
 - Moisture
- Basic stockpile principles

Batching

- Key items to control uniformity include batching sequence and accurate weights and measures.
- Considerations for controlling batchto-batch consistency are critical.

IOWA STATE

IVERSIT

Concrete Mixing and Delivery

- The concrete must be thoroughly mixed either at the plant or in the transit mixer.
- If allowed by specifications, adjustments to the mix are possible if a transit mixer is used.
- Ideally, the paver controls the production and delivery rate.

INIVERSIT

Field Adjustments

- Ambient temperatures
- Material variability
- Material supply changes

Adding Water

- Watch the amount of added water!
- Added water not to exceed max w/c (check batch tickets)
- If water added, mix for additional 30 revolutions

Adding 1 gallon / cu. yd:

- Increases workability ~1"
- Lowers strength ~200 psi
- Increases drying shrinkage ~10%
- Increases permeability ~ 50%

Fot: ?12					
	I	READY MID	CONCRETE		
Co	nron	6	(enu)	boo	Plant
Truck No.	5-133	39	Ticket No	1	
Date _S	115/13		Des. No		
Proj. No.	DHS-	106-	0(15)	74-1	65
Mix No C	JUHTBIP	ERetard	er/Water Red	ucer? XYes	No
Conc. mis		<	972		_ C.Y./m ³
Air agent a	dded this truck		233	14	oz./mL
Time Batch	ed 4:0	0	Discharged	4:20	
Rev. Mixed	(Plant)	01	Grade		
Water (gal.	/L or los./kg T	his Truck) 8 33lbs./gal		
In A	Aggregate	70	_gal./L		lbs./kg
	len (Plant) 🗋	HZ	_ gal./		_lbs./kg
	ototal	412	_gal./l		_lbs./kg
Add	ded Grade	12	_gal.//		lbs./kg
TO	TAL WATER	230	_gal/L		lbs./kg
Maximum V	Vater Allowed	291	gal./L	lbs./cy d	or kg/m ³
Air 12	ρ		Slump	2"	
Plansp.	Host	Set	sing	the Si	21130
Receiving In	nsp. Stev	e welf	45	2	
				/	

	Ready Mix	Concrete		
Plant	Cohron	Glenwood	8/20/2013	
Truck No.	T-554	Ticket No.	1	
Proj. No.	DHS-706-0			
Mix No.				
Conc. This	Truck	9.5	Cy.	
	This Truck	23.75	07	
Batched	2:48	Discharge	2'05	
Rev Plant	70	Grade	u	
Water	10	Grade		
vvalei	1	50.0		
	In Aggr.	53.2	Gallon	
	-			
	Plant	209.95	Gallon	
	1			
	Subtotal	263.15	Gallon	
	Add Grade		Gallon	
	-	93.15		
Total	Water 2	12.15	Gallon	
Max Wate	Allowed	290.7	Gallon	
Air 7.9	6	Slump_3	3/11	
	<u> </u>		14	
Plant Insp	Scott Scho	2 Aportes	SW130	
i lancinop_	Coon Cono	0	Smise	
Recv. Insp		24/2000		
neov. msp	SCI	1		
	all	\sim		

Paving Operations

Equipment Set-up Steel Guidance **Placement** Finishing Edge Slump Texturing Curing Weather Joints/Jointing Maturity

IMCP Manual – Construction: 37

IOWA STATE

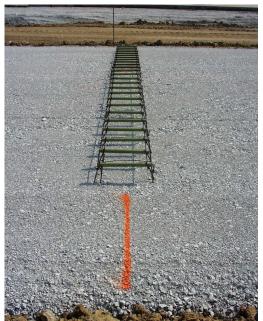
UNIVERSITY

Equipment Setup

IOWA STATE

UNIVERSITY

Equipment Setup


The following critical elements should be in place before production paving starts (IPRF 2003):

- Check all the equipment in the paving train to make sure it is in operational condition.
- Verify that an acceptable length of grade is available for concrete paving.
- Check that approved test reports are available for all materials in storage at the job site and the plant site.
- Verify that backup testing equipment is available; develop extra equipment backup plans.
- Verify that all necessary concrete placement tools are available, such as hand tools, straight edges, hand floats, edgers, and hand vibrators.
- Verify that radio/telephone communication with the plant is operational.
- Verify that equipment is available to water the grade, if necessary.
- Monitor the string line regularly and re-tension as necessary (slipform only).
- · Check the forms for proper bracing (fixed-form only).
- Verify that the day's work header is in place (or just saw off the excess).
- Develop an extreme-weather management plan.
- · Check the weather forecast for each day of paving.
- Make sure a sufficient length of plastic covering is available in case of sudden and unexpected rain.

Dowel Bars and Tiebars

- Pre-placed bars
- Inserted bars

IOWA STATE

UNIVERSITY

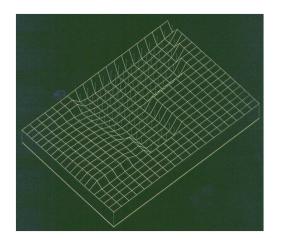
Forms/Stringlines

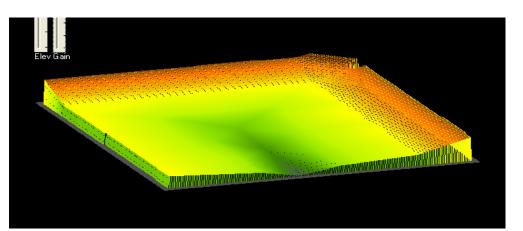
- Forms control elevation/guidance for general screed paving.
- Stringlines control the "steering" of the paver and the elevation and slab thickness.
- Stringlines have a dramatic effect on pavement smoothness and uniformity.

IOWA STATE

UNIVERSITY

Stringless Paving


- Total station technology
- Increases clearances/working platform
- Improved smoothness


Laser Screeds

- Creating a Profile
 - a profile of the project is created using the points from the site survey.

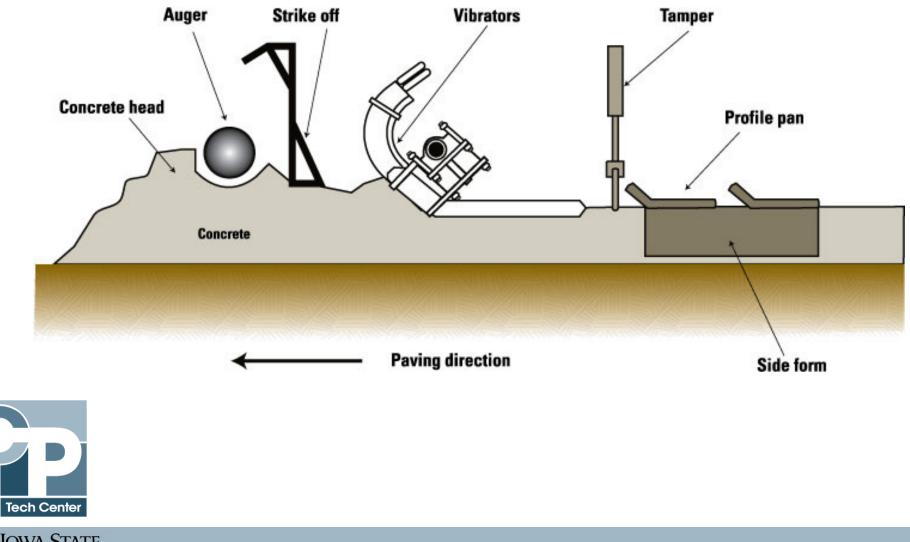
Surface Views

Laser Screeds

- Total station sends multiple signals every second
- Laser receivers on the placement head pick up the signals
 - Send data to the on-board computer
 - Tell the computer "where" the head is
- Computer adjusts the head to the designed elevation

Slipform Placement

- The single most important aspect of paving is uniform and consistent equipment operation.
- Workability and consistency of the mix are required to construct a smooth and high performance pavement.



IOWA STATE

UNIVERSITY

Slipform Paver Components

IOWA STATE UNIVERSITY

Proper Consolidation

- The internal vibrators on the paver fluidize the concrete for extrusion.
- Adequate consolidation is required around dowels and tie bars as well as throughout the slab.
- Note the effect of vibration in relation to paver speed.

IOWA STATE

INIVERSIT

Consolidation

Vibrator Setup

Slump Test

Used to check consistency between loads & wetness

- Used to approximate workability/ consistency
- $\frac{1}{2}$ " 2 $\frac{1}{2}$ " (machine finish) $\frac{1}{2}$ " 4" (hand finish)

Air Testing

- Calibrate the air meter
- Target is 8% before paver
- Target is 6% after paver

Air Testing – Behind the Paver

- Slipform pavers can have air loss of 2 % or greater
- Specs allow for checking behind the paver
- Allow check once in morning & if mix changes, once again
- Amount of air entrainment agent is contractor responsibility

Sampling concrete behind the paver

PEM – what, how & when do we measure?

	Shrinkage	Transport	Freeze/Thaw Durability	Aggregate Stability	Workability	Strength
How do we measure?	Paste <u>content</u> Drying <u>shrinkage</u> Dual Ring	Resistivity Formation <u>Factor</u>	w/cm ratio <u>Air content</u> <u>SAM</u> Calcium Oxychloride (LT-DSC)	ASR D-Cracking	Box Test V-Kelly	Flexural & Compressive (Maturity Method)
Mix Design	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
QC/Acceptance		\checkmark	\checkmark		\checkmark	\checkmark

Construction - Adding Surface Water to Concrete

- Specs prohibit adding water to slab by spray, wand, brush or other methods
- Wet burlap drag is allowed
- Decrease moisture if slurry or small bubbles develop on trailing edge of burlap

Wet burlap drag

Finishing

- Hand finishing is generally not required.
- Check surface with straight edge. (1/4" tolerance checked w/10' – 20" straight edge)
- Headers are generally a source of localized roughness (several options are available).

IOWA STATE

UNIVERSITY

Edge Slump

- Edge slump can arise from a number of factors. Materials
 - Equipment
- Early detection and corrective action is required.

IOWA STATE

UNIVERSITY

Using a level to check edge slump

Edge Quality

- Increase in mix water may cause edge slump
- Use temporary form to repair edge slump
- ½" edge slump permissible if no abutting pavement.
- ¼" edge slump permissible if abutting pavement

Texturing and Smoothness

- Provide friction and skid resistance
- Texturing options
 - Drag textures
 - Longitudinal tining
 - Transverse tining
 - Diamond grinding

IOWA STATE

UNIVERSITY

Curing

- Start Early
- Keep it wet & warm.
 When it dries, it dies.
- Does it affect strength? Yes.
- Surface should be uniform white on surface & edges
- Application rate = 0.067 gal per SY
- Apply within 30 min.
- Should not track after 12 hours

Non-uniform cure

Uniform cure placed quickly

IOWA STATE UNIVERSITY

Weather Considerations

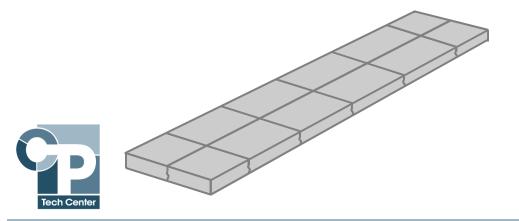
- Monitor forecast to determine if protection is necessary
- Cold weather placement
 - Heat mix water
 - Use blankets
 - Avoid thermal shock
- Hot weather precautions

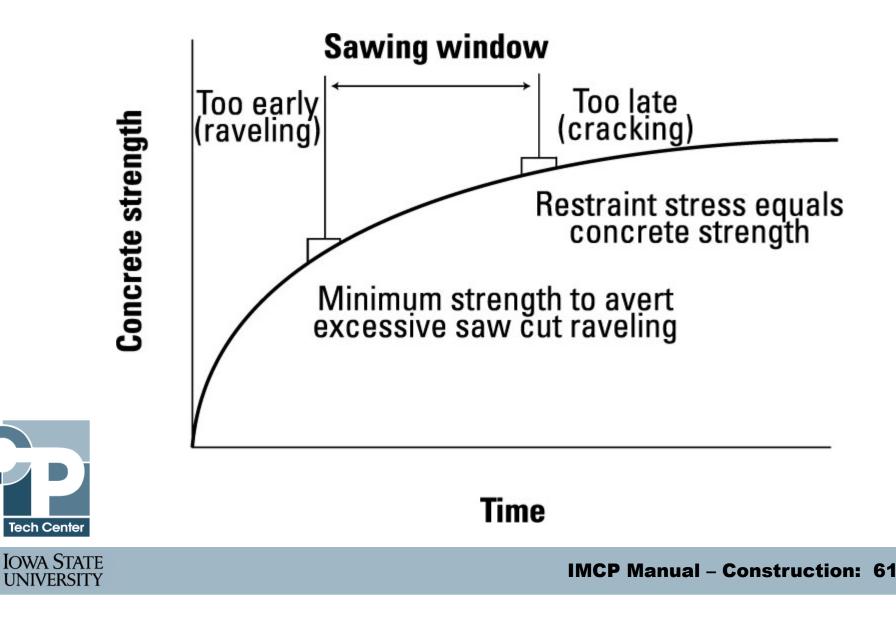
Hyperpave

Weather Considerations

- Protection from rain
 - Do not finish rain water into the surface
 - Raises the W/C ratio
 - Cover with plastic

Jointing of Concrete Pavements



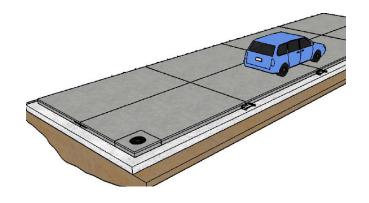

Concrete Jointing

- Joints control natural transverse & longitudinal cracking from internal slab stresses
- Divide pavement into construction lanes or increments
- Accommodate slab movements
- Provide load transfer
- Provide uniform sealant reservoir

Joint Sawing

Sawcut Depth

- Check saw depth and width daily
- Inadequate depths may lead to cracking
- Check saw blade wear



Joint Spacing

• Maximum joint spacing:

 $ML = T \times C_s$

- ML = Maximum length between joints (in.)
- T = Slab thickness (in.)

- C_s = Support constant (24 for subgrades or subbases; 21 for ATB, CTB, lean concrete, or existing concrete or asphalt)
- * Maximum spacing of transverse joints in plain (unreinforced) concrete should be 15 ft for slabs less than 10 in. thick.

Pavement	Maximum	Maximum	Maximum			
Thickness	Transverse	Transverse	Longitudinal			
(T)	'C' Joints	'CD' Joints	Joint Spacing			
< 9"	15'	15'	12-1/2'			
9"	15'	15'	14-1/2'			
> 9"	15'	20'	14-1/2'*			
*16' for Ramps						

Late Sawcut

- Sawing must be continuous regardless of weather
- Sawing is discontinued if crack develops ahead of saw
- Repair for random transverse cracks

Late sawing crack

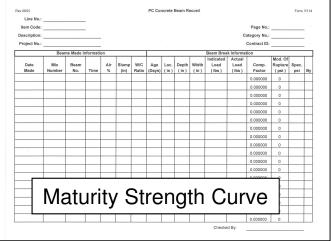
Joint Sealing

- Minimize infiltration of water and incompressible material
- Factors that affect performance
- Reservoir preparation
- Mfg. Recommend procedure

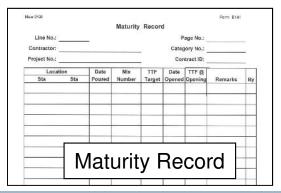
IOWA STATE

UNIVERSITY

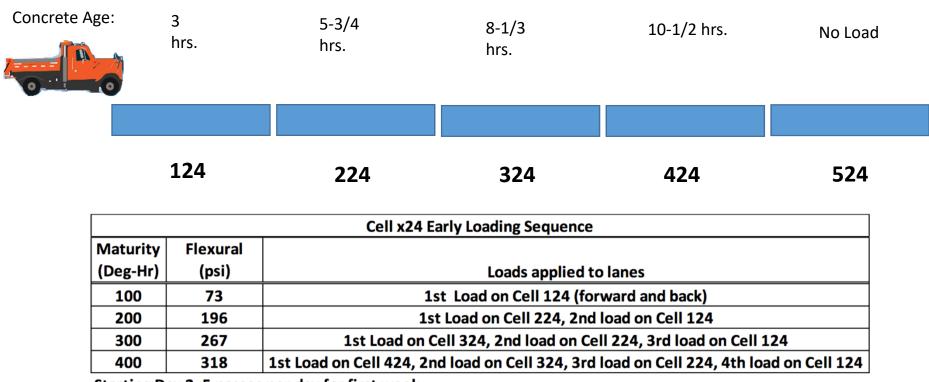
Maturity Testing


Casting maturity beams at the plant site

- Strength determines pavement opening (not time)
- Inspector monitors the process
- Maturity involves casting 12 beams & developing a strength/maturity curve


Maturity Testing

- NDT Method for determining concrete strength
- Time-Temperature Factor wires
- Inspector monitors periodically



Maturity probe location with hand held thermometer

Minnesota - The Experiment, 6" slab

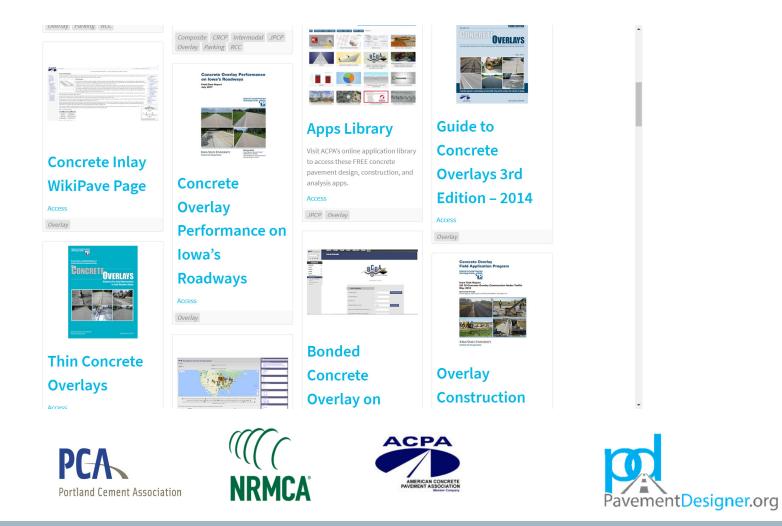
Starting Day 2, 5 passes per day for first week

Burnham - NCC 2017

Early loading of Cells 124-424

4,000 lb axle vs 14,000 lb axle loads (1st Cell @ 3hrs)

CONCRETE PAVEMENTS DONE RIGHT


A long lasting investment!

Concrete Pavement Resources

www.cptechcenter.org

QUESTIONS

